Kedro Airflow K8S Plugin
Release 0.5.1

GetinData

May 17, 2021

CONTENTS:

Introduction 1
1.1 Whatis Airflow? oL 1
1.2 Whatis Kubernetes? e e e e 1
1.3 Why to integrate Kedro project with Airflow nad Kubernetes? 1
Installation 3
2.1 Imstallation guide L. e 3
2.2 Configuration e e e e e e e e 5
Getting started 9
3.1 QuicksStart .. oL L e e e e e e e e 9
3.2 GCP AL Platform support o i e 13
3.3 0 MIHIOW SUPPOTt . . o o o v o e e e e e e e e e e e e e e e e e e e 13
Indices and tables 15

CHAPTER
ONE

INTRODUCTION

1.1 What is Airflow?

Airflow is a platform to programmatically author, schedule and monitor workflows. Workflows are represented as
DAGs. Each DAG is represented by nodes, that define job to be executed. The DAGs are stored in the file storage,
allowing user to run the pipeline once or schedule the recurring run.

1.2 What is Kubernetes?

Kubernetes is a platform for managing containerized workloads and services, that facilitates both declarative configu-
ration and automation.

1.3 Why to integrate Kedro project with Airflow nad Kubernetes?

Airflow’s main attitude is the portability. Once you define a pipeline, it can be started on any Kubernetes cluster.
The code to execute is stored inside docker images that cover not only the source itself, but all the libraries and entire
execution environment. Portability is also one of key Kedro aspects, as the pieplines must be versionable and package-
bale. Kedro, with Kedro-docker plugin do a fantastic job to achieve this and Airflow looks like a nice addon to run the
pipelines on powerful remote Kubernetes clusters.

https://airflow.apache.org/
https://kubernetes.io/
https://github.com/quantumblacklabs/kedro-docker

Kedro Airflow K8S Plugin, Release 0.5.1

2 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION

2.1 Installation guide

2.1.1 Kedro setup

First, you need to install base Kedro package in <17.0 version

Kedro 17.0 is supported by kedro-airflow-k8s, but not by kedro-mlflow yet, so the latest version from 0.16
family is recommended.

$ pip install 'kedro<0.17'

2.1.2 Plugin installation

Install from PyPI

You can install kedro-airflow-k8s plugin from PyPi with pip:

pip install --upgrade kedro-airflow-k8s

Install from sources

You may want to install the develop branch which has unreleased features:

pip install git+https://github.com/getindata/kedro-airflow-k8s.git@develop

2.1.3 Available commands

You can check available commands by going into project directory and runnning:

$ kedro airflow-k8s
Usage: kedro airflow-k8s [OPTIONS] COMMAND [ARGS]...
Options:

-e, --env TEXT Environment to use.
-p, --pipeline TEXT Pipeline name to pick.

(continues on next page)

https://github.com/Galileo-Galilei/kedro-mlflow/issues/144

Kedro Airflow K8S Plugin, Release 0.5.1

(continued from previous page)

-h, --help Show this message and exit.

Commands :
compile Create an Airflow DAG for a project
init Initializes configuration for the plugin
list-pipelines List pipelines generated by this plugin
run-once Uploads pipeline to Airflow and runs once
schedule Uploads pipeline to Airflow with given schedule
ui Open Apache Airflow UI in new browser tab

upload-pipeline Uploads pipeline to Airflow DAG location

compile

compile command takes one argument, which is the directory name containing configuration (relative to conf folder).
As an outcome, dag directory contains python file with generated DAG.

init

init command adds default plugin configuration to the project, based on Apache Airflow CLI input. It also allows
optionally adding github actions, to streamline project build and upload.

list-pipelines

list-pipelines lists all pipelines generated by this plugin which exist in Airflow server. All generated DAGs are
tagged with tag generated_with_kedro_airflow_k8s:$PLUGIN_VERSION and the prefix of this tag is used to
distinguish among the other tags.

run-once

run-once command generates DAG from the pipeline, uploads it Airflow DAG location and triggers the DAG run as
soon as the new DAG instance is available. It optionally allows waiting for DAG run completion, checking if success
status is returned.

schedule

schedule command takes three arguments, one is the directory name containing configuration (relative to conf folder),
the second one is the output location of generated dag, the third is cron like expression that relates to Airflow DAG
schedule_interval.

4 Chapter 2. Installation

Kedro Airflow K8S Plugin, Release 0.5.1

ui

ui simplifies access to Apache Airflow console. It also allows open UI for the specific DAG.

upload-pipeline

upload-pipeline command takes two arguments, one is the directory name containing configuration (relative to
conf folder), the second one is the output location of generated dag.

2.2 Configuration

Plugin maintains the configuration in the conf/base/airflow-k8s.yanl file.

Base url of the Apache Airflow, should include the schema (http/https)
host: https://airflow.example.com

Directory from where Apache Airflow is reading DAGs definitions
output: gs://airflow-bucket-example-com

Configuration used to run the pipeline
run_config:

Name of the image to run as the pipeline steps
image: airflow-k8s-plugin-demo

Pull policy to be used for the steps. Use Always if you push the images
on the same tag, or Never if you use only local images
image_pull_policy: IfNotPresent

Pod startup timeout in seconds - if timeout passes the pipeline fails, default to.
600
startup_time: 600

Namespace for Airflow pods to be created
namespace: airflow

Name of the Airflow experiment to be created
experiment_name: Airflow K8S Plugin Demo

Name of the dag as it's presented in Airflow
run_name: airflow-k8s-plugin-demo

Apache Airflow cron expression for scheduled runs
cron_expression: "@daily"

Optional pipeline description
description: "Very Important Pipeline"

Optional volume specification
volume:
Storage class - use null (or no value) to use the default storage

(continues on next page)

2.2. Configuration 5

Kedro Airflow K8S Plugin, Release 0.5.1

(continued from previous page)

—other

class deployed on the Kubernetes cluster

storageclass: # default

The size of the volume that is created. Applicable for some storage
classes

size: 1Gi

Access mode of the volume used to exchange data. ReadWriteMany is

preferred, but it is not supported on some environements (like GKE)

Default value: ReadWriteOnce

#access_modes: [ReadWriteMany]

Flag indicating if the data-volume-init step (copying raw data to the
fresh volume) should be skipped

skip_init: False

Allows to specify fsGroup executing pipelines within containers

Default: root user group (to avoid issues with volumes in GKE)

owner: 0

If set to True, shared persistent volume will not be created at all and all.
parameters under

“volume are discarded

disabled: False

Optional resources specification
resources:

Default configuration used by all nodes that do not declare the
resource configuration. It's optional. If node does not declare the resource
configuration, __default__ is assigned by default, otherwise cluster defaults
will be used.
__default__:
Optional labels to be put into pod node selector
node_selectors:
#Labels are user provided key value pairs
node_pool_label/k8s.io: example_value
Optional labels to apply on pods
labels:
running: airflow
Optional annotations to apply on pods
annotations:
iam.amazonaws.com/role: airflow
Optional list of kubernetes tolerations
tolerations:
- key: "group"
value: "data-processing"
effect: "NoExecute"
- key: "group"
operator: "Equal",
value: "data-processing",
effect: "NoSchedule"

requests:
#0ptional amount of cpu resources requested from k8s
cpu: "1"

Optional amount of memory resource requested from k8s
memory: "1Gi"
limits:

(continues on next page)

Chapter 2. Installation

Kedro Airflow K8S Plugin, Release 0.5.1

(continued from previous page)

#0ptional amount of cpu resources limit on k8s
cpu: "1"
#0ptional amount of memory resource limit on k8s
memory: "1Gi"

Other arbitrary configurations to use, for example to indicate some exception.

—resources
huge_machines:
node_selectors:

big_node_pool: huge.10x

requests:
cpu: "16"
memory: "128Gi"
limits:
cpu: "32"

memory: "256Gi"
Optional external dependencies configuration
external_dependencies:
Can just select dag as a whole
- dag_id: upstream-dag
or detailed
- dag_id: another-upstream-dag
with specific task to wait on
task_id: with-precise-task
Maximum time (minute) to wait for the external dag to finish before this
pipeline fails, the default is 1440 == 1 day
timeout: 2
Checks if the external dag exists before waiting for it to finish. If it
does not exists, fail this pipeline. By default is set to true.
check_existence: False
Time difference with the previous execution to look at (minutes),
the default is 0 meaning no difference
execution_delta: 10

2.2.1 Indicate resources in pipeline nodes

Every node declared in kedro pipelines is executed inside pod. Pod definition declares resources to be used based on
provided plugin configuration and presence of the tag resources in kedro node definition.

If no such tag is present, plugin will assign __default__ from plugin resources configuration. If no __default__
is given in plugin resources configuration or no resources configuration is given, pod definition will not be given
any information on how to allocate resources to pod, thus default k8s cluster values will be used.

train_model node is assigned resources from “huge_machines® configuration, if no such.
—configuration exists,

__default__" is used, and if __default__ does not exist, k8s cluster default values.
—are used

node(func=train_model, inputs=["X_train", "y_train"], outputs="regressor", name='train_
—model', tags=['resources:huge_machines'])
evaluate_model node is assigned resources __default__" configuration and if it does.

—not exist,
k8s cluster default values are used

(continues on next page)

2.2. Configuration 7

Kedro Airflow K8S Plugin, Release 0.5.1

(continued from previous page)

node (func=evaluate_model, inputs=["X_train", "y_train"], outputs="regressor', name=
— 'evaluate_model")

2.2.2 Dynamic configuration support

kedro-airflow-k8s contains hook that enables TemplatedConfigloader. It allows passing environment variables to con-
figuration files. It reads all environment variables following KEDRO_CONFIG_ pattern, which you can later inject in
configuration file using ${name} syntax.

There are two special variables KEDRO_CONFIG_COMMIT_ID, KEDRO_CONFIG_BRANCH_NAME with sup-
port specifying default when variable is not set, e.g. ${commit_id|dirty}

8 Chapter 2. Installation

CHAPTER
THREE

GETTING STARTED

3.1 Quickstart

3.1.1 Preprequisites

Although the plugin does not perform deployment, it’s recommended to have access to Airflow DAG directory in order
to test run the generated DAG.

3.1.2 Install the toy project with Kedro Airflow K8S support

It is a good practice to start by creating a new virtualenv before installing new packages. Therefore, use virtalenv
command to create new env and activate it:

$ virtualenv venv-demo
created virtual environment CPython3.8.5.final.0-64 in 145ms

creator CPython3Posix(dest=/home/mario/kedro/venv-demo, clear=False, no_vcs_
—ignore=False, global=False)

seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle,..
—via=copy, app_data_dir=/home/mario/.local/share/virtualenv)

added seed packages: pip==20.3.1, setuptools==51.0.0, wheel==0.36.2

activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,
—PythonActivator,XonshActivator
$ source venv-demo/bin/activate

Then, kedro must be present to enable cloning the starter project, along with the latest version of kedro-airflow-k8s
plugin and kedro-docker.

$ pip install 'kedro<0.17' kedro-airflow-k8s kedro-docker

With the dependencies in place, let’s create a new project:

$ kedro new --starter=git+https://github.com/getindata/kedro-starter-spaceflights.git --
—checkout allow_nodes_with_commas
Project Name:

Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Airflow K8S Plugin Demo

Repository Name:

(continues on next page)

Kedro Airflow K8S Plugin, Release 0.5.1

(continued from previous page)

Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.

[airflow-k8s-plugin-demo] :

Python Package Name:

Please enter a valid Python package name for your project package.

Alphanumeric characters and underscores are allowed.

Lowercase is recommended. Package name must start with a letter or underscore.
[airflow_k8s_plugin_demo]:

Change directory to the project generated in ${CWD}/airflow-k8s-plugin-demo

A best-practice setup includes initialising git and creating a virtual environment..
—before running
“kedro install® to install project-specific dependencies. Refer to the Kedro
documentation: https://kedro.readthedocs.io/

TODO: switch to the official spaceflights starter after https://github.com/quantumblacklabs/kedro-
starter-spaceflights/pull/10 is merged

Finally, go the demo project directory and ensure that kedro-airflow-k8s plugin is activated:

$ cd airflow-k8s-plugin-demo/
$ kedro install
¢...)
Requirements installed!
$ kedro airflow-k8s --help
" “console
$ kedro airflow-k8s

Usage: kedro airflow-k8s [OPTIONS] COMMAND [ARGS]...

Options:

-e, --env TEXT Environment to use.

-p, --pipeline TEXT Pipeline name to pick.

-h, --help Show this message and exit.

Commands:
compile Create an Airflow DAG for a project
init Initializes configuration for the plugin
list-pipelines List pipelines generated by this plugin
run-once Uploads pipeline to Airflow and runs once
schedule Uploads pipeline to Airflow with given schedule
ui Open Apache Airflow UI in new browser tab

upload-pipeline Uploads pipeline to Airflow DAG location

10 Chapter 3. Getting started

Kedro Airflow K8S Plugin, Release 0.5.1

3.1.3 Build the docker image to be used on Airflow K8S runs

First, initialize the project with kedro-docker configuration by running:

$ kedro docker init

This command creates a several files, including .dockerignore. This file ensures that transient files are not included
in the docker image and it requires small adjustment. Open it in your favourite text editor and extend the section #
except the following by adding there:

ldata/01_raw

This change enforces raw data existence in the image. Also, one of the limitations of running the Kedro pipeline
on Airflow (and not on local environment) is inability to use MemoryDataSets, as the pipeline nodes do not share
memory, so every artifact should be stored as file. The spaceflights demo configures four datasets as in-memory,
so let’s change the behaviour by adding these lines to conf/base/catalog.yml:

X_train:
type: pickle.PickleDataSet
filepath: data/05_model_input/X_train.pickle
layer: model_input

y_train:
type: pickle.PickleDataSet
filepath: data/05_model_input/y_train.pickle
layer: model_input

X_test:
type: pickle.PickleDataSet
filepath: data/05_model_input/X_test.pickle
layer: model_input

y_test:
type: pickle.PickleDataSet
filepath: data/05_model_input/y_test.pickle
layer: model_input

Finally, build the image:

kedro docker build

When execution finishes, your docker image is ready. If you don’t use local cluster, you should push the image to the
remote repository:

docker tag airflow_k8s_plugin_demo:latest remote.repo.url.com/airflow_k8s_plugin_
—demo:latest
docker push remote.repo.url.com/airflow_k8s_plugin_demo:latest

3.1. Quickstart 11

Kedro Airflow K8S Plugin, Release 0.5.1

3.1.4 Setup GIT repository

Plugin requires project to be under git repository. Perform repository initialization and commit project files

3.1.5 Compile DAG

Plugin requires configuration to be present. It’s best to use:

kedor airflow-k8s init --with-github-actions --output ${AIRFLOW_DAG_FOLDER} https://
—airflow.url

This command creates configuration file in conf/pipelines/airflow-k8s.yaml with some custom values and
reference to Airflow passed in arguments. It also creates some default github actions.

When wusing this command, pay attention that the configuration expects commit_id
and google_project_id to be present. Set them wup by setting environment variable
KEDRO_CONFIG_COMMIT_ID and KEDRO_CONFIG_GOOGLE_PROJECT_ID.

Also mlflow configuration has to be set up (if required by the project) as described in mlflow section.

Having configuration ready, type:

kedro airflow-k8s -e pipelines compile

This command compiles pipeline and generates DAG in dag/airflow_k8s_plugin_demo.py. This file should be
copied manually into Airflow DAG directory, that Airflow periodically scans. After it appears in airflow console, it is
ready to be triggered.

As an alternative, one cas use the following:

kedro airflow-k8s -e pipelines upload-pipeline -o ${ATIRFLOW_DAG_HOME}

in order to get DAG copied directly to Airflow DAG folder. Google Cloud Storage locations are also sup-
port with gcs:// or gs:// prefix in the parameter (this requires plugin to be installed with pip install
kedro-airflow-k8s[gcp]).

In order to use AWS S3 as storage, prefix output with s3:// (this requires plugin to be installed with pip install
kedro-airflow-k8s[aws]).

It’s optional to indicate which pipeline to pick, with -p option. By default, pipeline name __default__
is used. Option -p can refer to other pipeline by name it’s registered inside kedro hook.

3.1.6 Diagnose execution

Every kedro node is transformed into Airflow DAG task. DAG also contains other, supporting tasks, which are handled
by a set of custom operators. In order to diagnose DAG run, every task is logging information with standar python
logging library. The outcome is available in Airflow Log tab.

12 Chapter 3. Getting started

https://git-scm.com/docs/git-init

Kedro Airflow K8S Plugin, Release 0.5.1

3.2 GCP Al Platform support

Google Cloud’s Al Platform offers couple services that simplify Machine Learning tasks.

3.2.1 Using kedro with Al Platform Notebooks

Al Platform Notebooks provides an easy way to manage and host JupyterLab based data science workbench environ-
ment. What we’ve found out is that the default images provided by a service cause some dependency conflicts. To avoid
this issues make sure you use isolated virtual environment, e.g. virtualenv. New virual environment can be created by
simply invoking python -m virtualenv venv command.

3.3 Miflow support

If you use MLflow and kedro-mlflow for the Kedro pipeline runs monitoring, the plugin will automatically enable
support for:

* starting the experiment when the pipeline starts,
* logging all the parameters, tags, metrics and artifacts under unified MLFlow run.

To make sure that the plugin discovery mechanism works, add kedro-mlflow as a dependencies to src/
requirements.in and run:

$ pip-compile src/requirements.in > src/requirements.txt
$ kedro install
$ kedro mlflow init

Then, adjust the kedro-mlflow configuration and point to the mlflow server by editing conf/local/mlflow.yml and
adjusting mlflow_tracking_uri key. Then, build the image:

$ kedro docker build

And re-push the image to the remote registry.

If kedro-mlflow is notinstalled as dependency and configuration is not in place (missing kedro mlflow
init), the MLflow experiment will not be initialized and available for pipeline tasks in Apache Airflow
DAG.

3.2. GCP Al Platform support 13

https://cloud.google.com/ai-platform-notebooks
https://pypi.org/project/virtualenv/
https://mlflow.org/
https://kedro-mlflow.readthedocs.io/

Kedro Airflow K8S Plugin, Release 0.5.1

14 Chapter 3. Getting started

CHAPTER
FOUR

INDICES AND TABLES

* genindex
* modindex

¢ search

15

	Introduction
	What is Airflow?
	What is Kubernetes?
	Why to integrate Kedro project with Airflow nad Kubernetes?

	Installation
	Installation guide
	Kedro setup
	Plugin installation
	Install from PyPI
	Install from sources

	Available commands
	compile
	init
	list-pipelines
	run-once
	schedule
	ui
	upload-pipeline

	Configuration
	Indicate resources in pipeline nodes
	Dynamic configuration support

	Getting started
	Quickstart
	Preprequisites
	Install the toy project with Kedro Airflow K8S support
	Build the docker image to be used on Airflow K8S runs
	Setup GIT repository
	Compile DAG
	Diagnose execution

	GCP AI Platform support
	Using kedro with AI Platform Notebooks

	Mlflow support

	Indices and tables

