
Kedro Airflow K8S Plugin
Release 0.8.1

GetInData

Jun 22, 2023

CONTENTS:

1 Introduction 1
1.1 What is Airflow? . 1
1.2 What is Kubernetes? . 1
1.3 Why to integrate Kedro project with Airflow and Kubernetes? . 1

2 Installation 3
2.1 Installation guide . 3
2.2 Configuration . 5

3 Getting started 13
3.1 Quickstart . 13
3.2 GCP AI Platform support . 17
3.3 Mlflow support . 17
3.4 Authentication to MLflow API . 17
3.5 Authentication to Airflow API . 18
3.6 Spark integration . 20

4 Indices and tables 23

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 What is Airflow?

Airflow is a platform to programmatically author, schedule and monitor workflows. Workflows are represented as
DAGs. Each DAG is represented by nodes, that define job to be executed. The DAGs are stored in the file storage,
allowing user to run the pipeline once or schedule the recurring run.

1.2 What is Kubernetes?

Kubernetes is a platform for managing containerized workloads and services, that facilitates both declarative configu-
ration and automation.

1.3 Why to integrate Kedro project with Airflow and Kubernetes?

Airflow’s main attitude is the portability. Once you define a pipeline, it can be started on any Kubernetes cluster. The
code to execute is stored inside docker images that cover not only the source itself, but all the libraries and entire execu-
tion environment. Portability is also one of key Kedro aspects, as the pipelines must be versionable and packagebale.
Kedro, with Kedro-docker plugin do a fantastic job to achieve this and Airflow looks like a nice add-on to run the
pipelines on powerful remote Kubernetes clusters.

1

https://airflow.apache.org/
https://kubernetes.io/
https://github.com/quantumblacklabs/kedro-docker

Kedro Airflow K8S Plugin, Release 0.8.1

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

2.1 Installation guide

2.1.1 Kedro setup

First, you need to install base Kedro package in <17.0 version

Kedro 17.0 is supported by kedro-airflow-k8s, but not by kedro-mlflow yet, so the latest version from 0.16
family is recommended.

$ pip install 'kedro<0.17'

2.1.2 Plugin installation

Install from PyPI

You can install kedro-airflow-k8s plugin from PyPi with pip:

pip install --upgrade kedro-airflow-k8s

Install from sources

You may want to install the develop branch which has unreleased features:

pip install git+https://github.com/getindata/kedro-airflow-k8s.git@develop

2.1.3 Available commands

You can check available commands by going into project directory and runnning:

$ kedro airflow-k8s

Usage: kedro airflow-k8s [OPTIONS] COMMAND [ARGS]...

Options:
-e, --env TEXT Environment to use.
-p, --pipeline TEXT Pipeline name to pick.

(continues on next page)

3

https://github.com/Galileo-Galilei/kedro-mlflow/issues/144

Kedro Airflow K8S Plugin, Release 0.8.1

(continued from previous page)

-h, --help Show this message and exit.

Commands:
compile Create an Airflow DAG for a project
init Initializes configuration for the plugin
list-pipelines List pipelines generated by this plugin
run-once Uploads pipeline to Airflow and runs once
schedule Uploads pipeline to Airflow with given schedule
ui Open Apache Airflow UI in new browser tab
upload-pipeline Uploads pipeline to Airflow DAG location

compile

compile command takes one argument, which is the directory name containing configuration (relative to conf folder).
As an outcome, dag directory contains python file with generated DAG.

init

init command adds default plugin configuration to the project, based on Apache Airflow CLI input. It also allows
optionally adding github actions, to streamline project build and upload.

list-pipelines

list-pipelines lists all pipelines generated by this plugin which exist in Airflow server. All generated DAGs are
tagged with tag generated_with_kedro_airflow_k8s:$PLUGIN_VERSION and the prefix of this tag is used to
distinguish among the other tags.

run-once

run-once command generates DAG from the pipeline, uploads it Airflow DAG location and triggers the DAG run as
soon as the new DAG instance is available. It optionally allows waiting for DAG run completion, checking if success
status is returned.

schedule

schedule command takes three arguments, one is the directory name containing configuration (relative to conf folder),
the second one is the output location of generated dag, the third is cron like expression that relates to Airflow DAG
schedule_interval.

4 Chapter 2. Installation

Kedro Airflow K8S Plugin, Release 0.8.1

ui

ui simplifies access to Apache Airflow console. It also allows open UI for the specific DAG.

upload-pipeline

upload-pipeline command takes two arguments, one is the directory name containing configuration (relative to
conf folder), the second one is the output location of generated dag.

2.2 Configuration

Plugin maintains the configuration in the conf/base/airflow-k8s.yaml file.

Base url of the Apache Airflow, should include the schema (http/https)
host: https://airflow.example.com

Directory from where Apache Airflow is reading DAGs definitions
output: gs://airflow-bucket-example-com

Configuration used to run the pipeline
run_config:

Name of the image to run as the pipeline steps
image: airflow-k8s-plugin-demo

Pull policy to be used for the steps. Use Always if you push the images
on the same tag, or Never if you use only local images
image_pull_policy: IfNotPresent

Pod startup timeout in seconds - if timeout passes the pipeline fails, default to␣
→˓600

startup_time: 600

Namespace for Airflow pods to be created
namespace: airflow

Name of the Airflow experiment to be created
experiment_name: Airflow K8S Plugin Demo

Name of the dag as it's presented in Airflow
run_name: airflow-k8s-plugin-demo

Apache Airflow cron expression for scheduled runs
cron_expression: "@daily"

Optional start date in format YYYYMMDD, if not provided `days_ago(2)` is used␣
→˓instead

start_date: "20210721"

Optional pipeline description
description: "Very Important Pipeline"

(continues on next page)

2.2. Configuration 5

Kedro Airflow K8S Plugin, Release 0.8.1

(continued from previous page)

Comma separated list of image pull secret names
image_pull_secrets: my-registry-credentials

Service account name to execute nodes with
service_account_name: airflow

List of handlers executed after task failure
failure_handlers:
type of integration, currently only slack is available
- type: slack
airflow connection id with following parameters:
host - webhook url
password - webhook password
login - username
connection_id: slack
message template that will be send. It can contains following parameters that␣

→˓will be replaced:
task
dag
execution_time
message_template: |

:red_circle: Task Failed.
Task: {task}
Dag: {dag}
Execution Time: {execution_time}
Log Url: {url}

Optional volume specification
volume:

Storage class - use null (or no value) to use the default storage
class deployed on the Kubernetes cluster
storageclass: # default
The size of the volume that is created. Applicable for some storage
classes
size: 1Gi
Access mode of the volume used to exchange data. ReadWriteMany is
preferred, but it is not supported on some environements (like GKE)
Default value: ReadWriteOnce
#access_modes: [ReadWriteMany]
Flag indicating if the data-volume-init step (copying raw data to the
fresh volume) should be skipped
skip_init: False
Allows to specify fsGroup executing pipelines within containers
Default: root user group (to avoid issues with volumes in GKE)
owner: 0
If set to True, shared persistent volume will not be created at all and all␣

→˓other parameters under
`volume` are discarded
disabled: False

List of optional secrets specification

(continues on next page)

6 Chapter 2. Installation

Kedro Airflow K8S Plugin, Release 0.8.1

(continued from previous page)

secrets:
deploy_type: (Optional - default: 'env`) The type of secret deploy in␣

→˓Kubernetes, either `env` or `volume`
- deploy_type: "env"

deploy_target: (Optional) The environment variable when `deploy_type`␣
→˓`env` or file path when `deploy_type` `volume` where expose secret. If `key` is not␣
→˓provided deploy target should be None.

deploy_target: "SQL_CONN"
secret: Name of the secrets object in Kubernetes
secret: "airflow-secrets"
key: (Optional) Key of the secret within the Kubernetes Secret if not␣

→˓provided in `deploy_type` `env` it will mount all secrets in object
key: "sql_alchemy_conn"

Apache Airflow macros to be exposed for the parameters
List of macros can be found here:
https://airflow.apache.org/docs/apache-airflow/stable/macros-ref.html
macro_params: [ds, prev_ds]

Apache Airflow variables to be exposed for the parameters
variables_params: [env]

Optional resources specification
resources:

Default configuration used by all nodes that do not declare the
resource configuration. It's optional. If node does not declare the resource
configuration, __default__ is assigned by default, otherwise cluster defaults
will be used.
__default__:

Optional labels to be put into pod node selector
node_selectors:
#Labels are user provided key value pairs
node_pool_label/k8s.io: example_value

Optional labels to apply on pods
labels:
running: airflow

Optional annotations to apply on pods
annotations:
iam.amazonaws.com/role: airflow

Optional list of kubernetes tolerations
tolerations:

- key: "group"
value: "data-processing"
effect: "NoExecute"

- key: "group"
operator: "Equal",
value: "data-processing",
effect: "NoSchedule"

requests:
#Optional amount of cpu resources requested from k8s
cpu: "1"

(continues on next page)

2.2. Configuration 7

Kedro Airflow K8S Plugin, Release 0.8.1

(continued from previous page)

Optional amount of memory resource requested from k8s
memory: "1Gi"

limits:
#Optional amount of cpu resources limit on k8s
cpu: "1"
#Optional amount of memory resource limit on k8s
memory: "1Gi"

Other arbitrary configurations to use, for example to indicate some exception␣
→˓resources

huge_machines:
node_selectors:

big_node_pool: huge.10x
requests:

cpu: "16"
memory: "128Gi"

limits:
cpu: "32"
memory: "256Gi"

Optional external dependencies configuration
external_dependencies:

Can just select dag as a whole
- dag_id: upstream-dag
or detailed
- dag_id: another-upstream-dag
with specific task to wait on
task_id: with-precise-task

Maximum time (minute) to wait for the external dag to finish before this
pipeline fails, the default is 1440 == 1 day
timeout: 2

Checks if the external dag exists before waiting for it to finish. If it
does not exists, fail this pipeline. By default is set to true.
check_existence: False

Time difference with the previous execution to look at (minutes),
the default is 0 meaning no difference
execution_delta: 10

Optional authentication to MLflow API
authentication:
Strategy that generates the tokens, supported values are:
- Null
- GoogleOAuth2 (generating OAuth2 tokens for service account provided by GOOGLE_

→˓APPLICATION_CREDENTIALS)
- Vars (credentials fetched from airflow Variable.get - specify variable keys,
matching MLflow authentication env variable names, in `params`,
e.g. ["MLFLOW_TRACKING_USERNAME", "MLFLOW_TRACKING_PASSWORD"])
type: GoogleOAuth2
#params: []

Optional custom kubermentes pod templates applied on nodes basis
kubernetes_pod_templates:
Name of the node you want to apply the custom template to.
if you specify __default__, this template will be applied to all nodes.

(continues on next page)

8 Chapter 2. Installation

Kedro Airflow K8S Plugin, Release 0.8.1

(continued from previous page)

Otherwise it will be only applied to nodes tagged with `k8s_template:<node_name>`
spark:

Kubernetes pod template.
It's the full content of the pod-template file (as a string)
`run_config.volume` and `MLFLOW_RUN_ID` env are disabled when this is set.
Note: python F-string formatting is applied to this string, so
you can also use some dynamic values, e.g. to calculate pod name.

template: |-
type: Pod
metadata:
name: {PodGenerator.make_unique_pod_id('{{ task_instance.task_id }}')}
labels:
spark_driver: {'{{ task_instance.task_id }}'}

Optionally, you can also override the image
image:

Optional spark configuration
spark:
Type of spark clusters to use, supported values: dataproc, k8s, kubernetes,␣

→˓custom
type: dataproc
Optional factory of spark operators class
operator_factory: my_project.factories.OperatorFactory
Region indicates location of cluster for public cloud configurations, for␣

→˓example region in GCP
region: europe-west1
Project indicates logical placement inside public cloud configuration, for␣

→˓example project in GCP
project_id: target-project
Name of the cluster to be created
cluster_name: ephemeral
Location where the spark artifacts are uploaded
artifacts_path: gs://dataproc-staging-europe-west2-546213781-jabcdefp4/packages
Optional path in the project to the script portion preprended to generated init␣

→˓script
user_init_path: relative_location_to_src/init_script.sh
Optional path in the project to the script portion appended to generated init␣

→˓script
user_post_init_path: relative_location_to_src/post_init_script.sh
Optional configuration of the cluster, used during cluster creation, depends on␣

→˓type of the cluster
cluster_config: # example dataproc configuration
master_config:
disk_config:
boot_disk_size_gb: 35

worker_config:
disk_config:
boot_disk_size_gb: 35

2.2. Configuration 9

Kedro Airflow K8S Plugin, Release 0.8.1

2.2.1 Indicate resources in pipeline nodes

Every node declared in kedro pipelines is executed inside pod. Pod definition declares resources to be used based on
provided plugin configuration and presence of the tag resources in kedro node definition.

If no such tag is present, plugin will assign __default__ from plugin resources configuration. If no __default__
is given in plugin resources configuration or no resources configuration is given, pod definition will not be given
any information on how to allocate resources to pod, thus default k8s cluster values will be used.

train_model node is assigned resources from `huge_machines` configuration, if no such␣
→˓configuration exists,
`__default__` is used, and if __default__ does not exist, k8s cluster default values␣
→˓are used
node(func=train_model, inputs=["X_train", "y_train"], outputs="regressor", name='train_
→˓model', tags=['resources:huge_machines'])
evaluate_model node is assigned resources `__default__` configuration and if it does␣
→˓not exist,
k8s cluster default values are used
node(func=evaluate_model, inputs=["X_train", "y_train"], outputs="regressor", name=
→˓'evaluate_model')

2.2.2 Custom kubernetes pod templates

You can provide custom kubernetes pod templates using kubernetes_pod_templates. Pod template to be used is
based on the provided plugin configuration and presence of the tag k8s_template in kedro node definition.

If no such tag is present, plugin will assign __default__.template from plugin kubernetes_pod_templates
configuration, if exists. If no __default__ is given in plugin kubernetes_pod_templates configuration or no
kubernetes_pod_templates configuration is provided at all, the following plugin’s default minimal pod template
will be used.

type: Pod
metadata:
name: {PodGenerator.make_unique_pod_id('{{ task_instance.task_id }}')}

spec:
containers:
- name: base
env:
- name: MLFLOW_RUN_ID
value: {{ task_instance.xcom_pull(key="mlflow_run_id") }}

volumes:
- name: storage
persistentVolumeClaim:
claimName: {self._pvc_name}

where environment and volumes sections are present only if kedro mflow is used in the project and/or run_config.
volume is not disabled.

Note, that claimName is calculated the following way

pvc_name = '{{ project_name | safe | slugify }}.{% raw %}{{ ts_nodash | lower }}{%␣
→˓endraw %}'

If you do use a custom pod template and you want to keep the built-in mlflow/volume support you need to include these
sections in your template as well.

10 Chapter 2. Installation

Kedro Airflow K8S Plugin, Release 0.8.1

train_model node is assigned a custom pod template from `spark` configuration, if no␣
→˓such configuration exists,
`__default__` is used, and if __default__ does not exist, the plugin's minimal pod␣
→˓template is used
node(func=train_model, inputs=["X_train", "y_train"], outputs="regressor", name='train_
→˓model', tags=['k8s_template:spark'])
evaluate_model node is assigned a custom pod template `__default__` configuration and␣
→˓if it does not exist,
the plugin's default minimal pod template
node(func=evaluate_model, inputs=["X_train", "y_train"], outputs="regressor", name=
→˓'evaluate_model')

When using custom kubernetes pod templates the resulting pod configuration is a merge between properties provided
via plugin settings, e.g. resources.__default__.annotations, and those specified in a template. In case of a
conflict, plugin settings precede that of the template.

2.2.3 Spark on Kubernetes configuration

In order to configure spark on kubernetes, custom cluster_config has to be provided. It has the following structure:

type: kubernetes # or k8s
cluster_name: spark_k8s # name of the Airflow connection id, that points to kubernetes␣
→˓control plane, default `spark_default`
cluster_config:
Location of the script that initialize the kedro session and runs the project; is␣

→˓invoked with `run --env=$ENV --node=$NODES --runner=ThreadRunner` kedro parameters
arguments
run_script: local:///home/kedro/spark_run.py
Optional image to use for the driver and executor. If not provided, value from `run_

→˓config.image` is used
image: airflow-k8s-plugin-spark-demo
Optional spark configuration
conf:
spark.dynamicAllocation.enabled: true
spark.dynamicAllocation.maxExecutors: 4

Optional port of the driver
driver_port: 10000
Optional port of the block managers
block_manager_port: 10001
Optional dictionary of secrets to be mounted into driver and executor from the␣

→˓namespace of the project
secrets:
kedro-secret: /var/kedro_secret

Optional labels to be assigned to driver and executor
labels:
huge-machine: yes

Optional spark-dir local storage to be mounted from dynamically created PVC
local_storage:
class_name: standard
size: 100Gi

Optional dictionary of environment variables to be injected into driver and executor␣
→˓pods

(continues on next page)

2.2. Configuration 11

Kedro Airflow K8S Plugin, Release 0.8.1

(continued from previous page)

env_vars:
GOOGLE_APPLICATION_CREDENTIALS: /var/kedro_secret/sa

Optional request for cpu resources, for driver and executor (memory request equals␣
→˓memory limit)
requests:
cpu: 2

Optional limit for the cpu and memory resources, for driver and executor
limits:
cpu: 4
memory: 16Gi # enforces memory request

Optional number of executors to spawn
num_executors: 4 # by default 1
Optional list of jars used by the spark runtime, spark-submit format
jars: local:///home/kedro/jars/gcs-connector.jar
Optional list of repositories used by the spark runtime, spark-submit format
repositories: https://oss.sonatype.org/content/groups/public
Optional list of packages used by the spark runtime, spark-submit format
packages: org.apache.spark:spark-streaming-kafka_2.10:1.6.0,org.

→˓elasticsearch:elasticsearch-spark_2.10:2.2.0

Additionally, the following parameters are used from the project configuration to create the pods: run_config.image,
run_config.image_pull_policy, run_config.namespace, run_config.service_account_name.

Further details on configuring spark jobs on k8s at https://spark.apache.org/docs/latest/running-on-kubernetes.html.

2.2.4 Dynamic configuration support

kedro-airflow-k8s contains hook that enables TemplatedConfigLoader. It allows passing environment variables to con-
figuration files. It reads all environment variables following KEDRO_CONFIG_ pattern, which you can later inject in
configuration file using ${name} syntax.

There are two special variables KEDRO_CONFIG_COMMIT_ID, KEDRO_CONFIG_BRANCH_NAME with sup-
port specifying default when variable is not set, e.g. ${commit_id|dirty}

12 Chapter 2. Installation

CHAPTER

THREE

GETTING STARTED

3.1 Quickstart

3.1.1 Preprequisites

Although the plugin does not perform deployment, it’s recommended to have access to Airflow DAG directory in order
to test run the generated DAG.

3.1.2 Install the toy project with Kedro Airflow K8S support

It is a good practice to start by creating a new virtualenv before installing new packages. Therefore, use virtalenv
command to create new env and activate it:

$ virtualenv venv-demo
created virtual environment CPython3.8.5.final.0-64 in 145ms
creator CPython3Posix(dest=/home/mario/kedro/venv-demo, clear=False, no_vcs_

→˓ignore=False, global=False)
seeder FromAppData(download=False, pip=bundle, setuptools=bundle, wheel=bundle,␣

→˓via=copy, app_data_dir=/home/mario/.local/share/virtualenv)
added seed packages: pip==20.3.1, setuptools==51.0.0, wheel==0.36.2

activators BashActivator,CShellActivator,FishActivator,PowerShellActivator,
→˓PythonActivator,XonshActivator
$ source venv-demo/bin/activate

Then, kedromust be present to enable cloning the starter project, along with the latest version of kedro-airflow-k8s
plugin and kedro-docker.

$ pip install 'kedro<0.17' kedro-airflow-k8s kedro-docker

With the dependencies in place, let’s create a new project:

$ kedro new --starter=git+https://github.com/getindata/kedro-starter-spaceflights.git --
→˓checkout allow_nodes_with_commas
Project Name:
=============
Please enter a human readable name for your new project.
Spaces and punctuation are allowed.
[New Kedro Project]: Airflow K8S Plugin Demo

Repository Name:
(continues on next page)

13

Kedro Airflow K8S Plugin, Release 0.8.1

(continued from previous page)

================
Please enter a directory name for your new project repository.
Alphanumeric characters, hyphens and underscores are allowed.
Lowercase is recommended.
[airflow-k8s-plugin-demo]:

Python Package Name:
====================
Please enter a valid Python package name for your project package.
Alphanumeric characters and underscores are allowed.
Lowercase is recommended. Package name must start with a letter or underscore.
[airflow_k8s_plugin_demo]:

Change directory to the project generated in ${CWD}/airflow-k8s-plugin-demo

A best-practice setup includes initialising git and creating a virtual environment␣
→˓before running
`kedro install` to install project-specific dependencies. Refer to the Kedro
documentation: https://kedro.readthedocs.io/

TODO: switch to the official spaceflights starter after https://github.com/quantumblacklabs/kedro-
starter-spaceflights/pull/10 is merged

Finally, go the demo project directory and ensure that kedro-airflow-k8s plugin is activated:

$ cd airflow-k8s-plugin-demo/
$ kedro install
(...)
Requirements installed!
$ kedro airflow-k8s --help
```console
$ kedro airflow-k8s

Usage: kedro airflow-k8s [OPTIONS] COMMAND [ARGS]...

Options:
-e, --env TEXT Environment to use.
-p, --pipeline TEXT Pipeline name to pick.
-h, --help Show this message and exit.

Commands:
compile Create an Airflow DAG for a project
init Initializes configuration for the plugin
list-pipelines List pipelines generated by this plugin
run-once Uploads pipeline to Airflow and runs once
schedule Uploads pipeline to Airflow with given schedule
ui Open Apache Airflow UI in new browser tab
upload-pipeline Uploads pipeline to Airflow DAG location

14 Chapter 3. Getting started



Kedro Airflow K8S Plugin, Release 0.8.1

3.1.3 Build the docker image to be used on Airflow K8S runs

First, initialize the project with kedro-docker configuration by running:

$ kedro docker init

This command creates a several files, including .dockerignore. This file ensures that transient files are not included
in the docker image and it requires small adjustment. Open it in your favourite text editor and extend the section #
except the following by adding there:

!data/01_raw

This change enforces raw data existence in the image. Also, one of the limitations of running the Kedro pipeline
on Airflow (and not on local environment) is inability to use MemoryDataSets, as the pipeline nodes do not share
memory, so every artifact should be stored as file. The spaceflights demo configures four datasets as in-memory,
so let’s change the behaviour by adding these lines to conf/base/catalog.yml:

X_train:
type: pickle.PickleDataSet
filepath: data/05_model_input/X_train.pickle
layer: model_input

y_train:
type: pickle.PickleDataSet
filepath: data/05_model_input/y_train.pickle
layer: model_input

X_test:
type: pickle.PickleDataSet
filepath: data/05_model_input/X_test.pickle
layer: model_input

y_test:
type: pickle.PickleDataSet
filepath: data/05_model_input/y_test.pickle
layer: model_input

Finally, build the image:

kedro docker build

When execution finishes, your docker image is ready. If you don’t use local cluster, you should push the image to the
remote repository:

docker tag airflow_k8s_plugin_demo:latest remote.repo.url.com/airflow_k8s_plugin_
→˓demo:latest
docker push remote.repo.url.com/airflow_k8s_plugin_demo:latest

3.1. Quickstart 15



Kedro Airflow K8S Plugin, Release 0.8.1

3.1.4 Setup GIT repository

Plugin requires project to be under git repository. Perform repository initialization and commit project files

3.1.5 Compile DAG

Plugin requires configuration to be present. It’s best to use:

kedro airflow-k8s init --with-github-actions --output ${AIRFLOW_DAG_FOLDER} https://
→˓airflow.url

This command creates configuration file in conf/pipelines/airflow-k8s.yaml with some custom values and
reference to Airflow passed in arguments. It also creates some default github actions.

When using this command, pay attention that the configuration expects commit_id
and google_project_id to be present. Set them up by setting environment variable
KEDRO_CONFIG_COMMIT_ID and KEDRO_CONFIG_GOOGLE_PROJECT_ID.

Also mlflow configuration has to be set up (if required by the project) as described in mlflow section.

Having configuration ready, type:

kedro airflow-k8s -e pipelines compile

This command compiles pipeline and generates DAG in dag/airflow_k8s_plugin_demo.py. This file should be
copied manually into Airflow DAG directory, that Airflow periodically scans. After it appears in airflow console, it is
ready to be triggered.

As an alternative, one cas use the following:

kedro airflow-k8s -e pipelines upload-pipeline -o ${AIRFLOW_DAG_HOME}

in order to get DAG copied directly to Airflow DAG folder. Google Cloud Storage locations are also sup-
port with gcs:// or gs:// prefix in the parameter (this requires plugin to be installed with pip install
kedro-airflow-k8s[gcp]).

In order to use AWS S3 as storage, prefix output with s3:// (this requires plugin to be installed with pip install
kedro-airflow-k8s[aws]).

It’s optional to indicate which pipeline to pick, with -p option. By default, pipeline name __default__
is used. Option -p can refer to other pipeline by name it’s registered inside kedro hook.

3.1.6 Diagnose execution

Every kedro node is transformed into Airflow DAG task. DAG also contains other, supporting tasks, which are handled
by a set of custom operators. In order to diagnose DAG run, every task is logging information with standar python
logging library. The outcome is available in Airflow Log tab.

16 Chapter 3. Getting started

https://git-scm.com/docs/git-init


Kedro Airflow K8S Plugin, Release 0.8.1

3.2 GCP AI Platform support

Google Cloud’s AI Platform offers couple services that simplify Machine Learning tasks.

3.2.1 Using kedro with AI Platform Notebooks

AI Platform Notebooks provides an easy way to manage and host JupyterLab based data science workbench environ-
ment. What we’ve found out is that the default images provided by a service cause some dependency conflicts. To avoid
this issues make sure you use isolated virtual environment, e.g. virtualenv. New virual environment can be created by
simply invoking python -m virtualenv venv command.

3.3 Mlflow support

If you use MLflow and kedro-mlflow for the Kedro pipeline runs monitoring, the plugin will automatically enable
support for:

• starting the experiment when the pipeline starts,

• logging all the parameters, tags, metrics and artifacts under unified MLFlow run.

To make sure that the plugin discovery mechanism works, add kedro-mlflow as a dependencies to src/
requirements.in and run:

$ pip-compile src/requirements.in > src/requirements.txt
$ kedro install
$ kedro mlflow init

Then, adjust the kedro-mlflow configuration and point to the mlflow server by editing conf/local/mlflow.yml and
adjusting mlflow_tracking_uri key. Then, build the image:

$ kedro docker build

And re-push the image to the remote registry.

If kedro-mlflow is not installed as dependency and configuration is not in place (missing kedro mlflow
init), the MLflow experiment will not be initialized and available for pipeline tasks in Apache Airflow
DAG.

3.4 Authentication to MLflow API

3.4.1 GoogleOAuth2

Given that Airflow has access to GOOGLE_APPLICATION_CREDENTIALS variable, it’s possible to configure plugin to
use Google service account to authenticate to secured MLflow API endpoint, by generating OAuth2 token.

All is required to have GOOGLE_APPLICATION_CREDENTIALS environment variable setup in Airflow installation and
MLflow to be protected by Google as an issuer. The other thing is to have environment variable GOOGLE_AUDIENCE
which indicates OAuth2 audience the token should be issued for.

Also, plugin configuration requires the following:

3.2. GCP AI Platform support 17

https://cloud.google.com/ai-platform-notebooks
https://pypi.org/project/virtualenv/
https://mlflow.org/
https://kedro-mlflow.readthedocs.io/


Kedro Airflow K8S Plugin, Release 0.8.1

run_config:
authentication:
type: GoogleOAuth2

3.4.2 Vars

If you store your credentials in Airflow secrets backend, e.g. HashiCorp vault, it’s possible to configure the plugin to
use Airflow Variables as MLFlow API credentials.

Names of the variables need to match expected MLflow environment variable names, e.g. MLFLOW_TRACKING_TOKEN.
You specify them in the authentiation config. For instance, setting up Basic Authentication requires the following:

run_config:
authentication:
type: Vars
params: ["MLFLOW_TRACKING_USERNAME", "MLFLOW_TRACKING_PASSWORD"]

NOTE: Authentication is an optional element and is used when starting MLflow experiment, so if MLflow
is enabled in project configuration. It does not setup authentication inside Kedro nodes, this has to be
handled by the project. Check GoogleOAuth2Handler class for details.

3.5 Authentication to Airflow API

Most of the operations provided by plugin uses Airflow API to either list dags or trigger them. By default, access to
Airflow API is blocked and in order to enable it you need to modify api.auth_backend config variable as described
in the documentation. Suggested setting for best plugin usage experience is to disable authentication on Airflow by
setting value airflow.api.auth.backend.default and install middleware proxy blocking access to the API paths
to users without expected JWT token in the header.

Sample configuration for istio filter and token issued by gcloud SDK can look like:

apiVersion: security.istio.io/v1beta1
kind: RequestAuthentication
metadata:
name: jwt-token-verification

spec:
selector:
matchLabels:
component: webserver

jwtRules:
- issuer: https://accounts.google.com
jwksUri: https://www.googleapis.com/oauth2/v3/certs
audiences:
- 32555940559.apps.googleusercontent.com # google token generator

---
apiVersion: security.istio.io/v1beta1
kind: AuthorizationPolicy
metadata:
name: airflow-api-access

spec:
selector:

(continues on next page)

18 Chapter 3. Getting started

https://airflow.apache.org/docs/apache-airflow/stable/security/api.html
https://airflow.apache.org/docs/apache-airflow/stable/security/api.html


Kedro Airflow K8S Plugin, Release 0.8.1

(continued from previous page)

matchLabels:
component: webserver

rules:
# allow all users to access UI, but not API
# UI has its own access management
- to:
- operation:

notPaths: ["/api/*"]
# enforce JWT token on API
- when:
- key: request.auth.audiences
values:
- 32555940559.apps.googleusercontent.com # issued by gcloud sdk

- key: request.auth.presenter
values:
- [service-account]@[google-project].iam.gserviceaccount.com

to:
- operation:

paths: ["/api/*"]

This setup ensures that all requests to the API paths are validated by Istio by checking the content of JWT token issued by
Google (using gcloud auth print-identity-token]. In order to validate other tokens, modify audiences and jwtRules
accordingly.

Token can be passed to kedro airflow-k8s commands by using environment variable AIRFLOW_API_TOKEN, for
example:

$ AIRFLOW_API_TOKEN=eyJhbGci... kedro airflow-k8s list-pipelines 2> /dev/null
2021-08-13 14:59:13,635 - root - INFO - Registered hooks from 3 installed plugin(s):␣
→˓kedro-kubeflow-0.3.1, kedro-mlflow-0.7.2
2021-08-13 14:59:13,680 - root - INFO - Registered CLI hooks from 1 installed plugin(s):␣
→˓kedro-telemetry-0.1.1
2021-08-13 15:05:38,800 - kedro_telemetry.plugin - INFO - You have opted into product␣
→˓usage analytics.
2021-08-13 14:59:14,764 - kedro.framework.session.store - INFO - `read()` not␣
→˓implemented for `BaseSessionStore`. Assuming empty store.
Name ID
------- ------------------
model1 model1-branch-name

3.5. Authentication to Airflow API 19

https://cloud.google.com/sdk/gcloud/reference/auth/print-identity-token


Kedro Airflow K8S Plugin, Release 0.8.1

3.6 Spark integration

Kedro allows integration with pyspark as described in kedro documentation. kedro-airflow-k8s allows running such
projects with Airflow, using the external Spark cluster as a computation environment. Not every pipeline node is
executed on spark cluster, but only the ones which require spark environment.

3.6.1 Project handling

In order to make this happen, the following applies. Firstly plugin detects if any of the kedro nodes are pyspark related.
All such nodes are logically grouped in a way that dependencies between all nodes in the pipeline are maintained.
Such construction keeps data management between kedro nodes local within the cluster for performance matter, while
enforcing order correctness. Secondly, plugin creates spark submit nodes inside the DAG to reflect spark related tasks,
grouped in the previous step. Additionally, the cluster create and delete operator is setup so that the dedicated spark in-
stance is ready for the sake of given job run. As the last step, the artifacts required by spark, namely cluster initialization
shell script, project archive and kedro run python script are prepared.

3.6.2 Configuration

spark configuration is a part of a run_config. This plugin supports Google Dataproc, but it’s also possible to provide
custom operators via external factory.

Google Dataproc

To configure Dataproc with the project, set run_config.spark.type as dataproc. Use cluster_config to provide
dictionary that describes the cluster as required by Airflow Dataproc operators. Checking with Google Dataproc REST
API is helpful.

Kubernetes

It’s possible to execute kedro spark jobs on K8S. In this case, there’s no external cluster that’s started for the purpose
of the task. Instead, user has to provide image, containing both spark and kedro project. Usually such image is created
with docker-image-tool.sh, which is a part of spark distribution. Example image building process may look like
this:

cp -r $SPARK_HOME /tmp
cd $KEDRO_PROJECT_HOME
cp -r . /tmp/spark-3.1.2-bin-hadoop3.2
/tmp/spark-3.1.2-bin-hadoop3.2/bin/docker-image-tool.sh -t $COMMIT_SHA -p Dockerfile -r
→˓$REGISTRY_IMAGE -b java_image_tag=14-slim build

There’s a manual work to be done with the Dockerfile first. One approach is to use one of the templates provided
by spark distribution and merge it with the Dockerfile of kedro project. It’s important that image contain kedro
project with all of it’s contents and it’s installed as a package on a system level together with all the requirements. Any
supplementary jars required by the project can be included as well, unless should be fetched during the job execution
from the external location.

It’s also required to provide runner script inside the image. This script is provided as an entry point to spark-submit.
The script should accept run command, --env kedro application argument, --node as a comma-separated list of kedro
nodes names to be executed and --runner=ThreadRunner. It should initialize kedro session and run project with
given arguments.

20 Chapter 3. Getting started

https://kedro.readthedocs.io/en/latest/11_tools_integration/01_pyspark.html%7Chere
https://github.com/apache/airflow/blob/v2-1-stable/airflow/providers/google/cloud/operators/Dataproc.py
https://cloud.google.com/dataproc/docs/reference/rest/v1/ClusterConfig
https://cloud.google.com/dataproc/docs/reference/rest/v1/ClusterConfig


Kedro Airflow K8S Plugin, Release 0.8.1

Dockerfile should execute spark entrypoint on start. Script is provided as an argument to
spark-submit

Example script template is provided inside the plugin sources in src/kedro_airflow_k8s/templates/
spark_run.py.tpl. The script is delegating invocation directly to kedro.

Custom configuration

In order to provide one’s own operators it’s sufficient to mark run_config.spark.type as custom, and provide
run_config.spark.operator_factory with the name of the custom class that acts as the operator factory. The
class has to be available on the path when executing kedro airflow-k8s commands.

The easiest way to start is to derive from kero_airflow_k8s.template_helper.SparkOperatorFactoryBase.
The following methods have to be provided:

• create_cluster_operator - returns string with the create cluster operator

• delete_cluster_operator - returns string with the delete cluster operator

• submit_operator - returns string with the submit job operator

• imports_statement - returns string with the full import statement of all required items from the previous methods

Custom initialization script

run_config.spark.user_init_path allows configuring the way the cluster is initialized. Plugin delivers initializa-
tion script that’s aligned with the project artifacts. The script can be prepended with custom logic, to support the cases
like custom package repository setup. run_config.spark.user_post_init_path additionally allows appending
to initialization script part of the shell script. Scripts can use environment variable PROJECT_HOME in order to refer to
project location on the cluster. It’s required the paths to be relative to the project src path.

3.6.3 Detection of spark nodes

As the part of the plugin’s process is to detect spark based nodes, the following rules apply:

• if the node is tagged with kedro-airflow-k8s:group:pyspark it’s considered as a spark node - this allows
arbitrary user selection of node to be executed by spark

• if any of the node’s input or output is of type pyspark.sql.dataframe.DataFrame it’s considered as a spark
node - detection happens based on the type hints

• if any of the node’s input or output is present in the data catalog as one of the SparkDataSet,
SparkHiveDataSet, SparkJDBCDataSet it’s considered as a spark node

• if none of the above applies, but logical group of spark nodes provide data as input to the node and the node
provides the data as the input to the group it’s considered as a spark node

• if none of the above applies, the node is considered as the default and it’s put into DAG as usual

3.6. Spark integration 21



Kedro Airflow K8S Plugin, Release 0.8.1

22 Chapter 3. Getting started



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

23


	Introduction
	What is Airflow?
	What is Kubernetes?
	Why to integrate Kedro project with Airflow and Kubernetes?

	Installation
	Installation guide
	Kedro setup
	Plugin installation
	Install from PyPI
	Install from sources

	Available commands
	compile
	init
	list-pipelines
	run-once
	schedule
	ui
	upload-pipeline


	Configuration
	Indicate resources in pipeline nodes
	Custom kubernetes pod templates
	Spark on Kubernetes configuration
	Dynamic configuration support


	Getting started
	Quickstart
	Preprequisites
	Install the toy project with Kedro Airflow K8S support
	Build the docker image to be used on Airflow K8S runs
	Setup GIT repository
	Compile DAG
	Diagnose execution

	GCP AI Platform support
	Using kedro with AI Platform Notebooks

	Mlflow support
	Authentication to MLflow API
	GoogleOAuth2
	Vars

	Authentication to Airflow API
	Spark integration
	Project handling
	Configuration
	Google Dataproc
	Kubernetes
	Custom configuration
	Custom initialization script

	Detection of spark nodes


	Indices and tables

